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S U M M A R Y  
A perturbation scheme is described to treat time variable cryptodeterministic systems. According to Moyal's degree 
of randomness criteria the method provides a complete stochastic characterization of the system response. Certain 
digital computational features, when the perturbation scheme is not applicable, are also outlined. For an assumed 
random initial state, the results are then applied to describe the transient flapping oscillations of a helicopter blade 
which in forward flight has periodically varying aerodynamic damping and spring parameters. 

1. Introduction 

In the simulation of physical systems in a stochastic environment, randomness in the idealized 
discrete system is introduced through several sources- initial state, inputs, system parameters 
and eigenvalues. In recent years such stochastic systems have received considerable attention 
[1-15]. In the general field of stochastic differential equations, Syski [1] has reviewed the state 
of knowledge and significant advances prior to 1967. Boyce [2] has given a comprehensive 
account of random eigenvalue methods proposed up to 1968. From the viewpoint of engineering 
applications, Hasselmann [3] has treated constant parameter systems with random initial state 
and with stationary random inputs, and Van Trees [4] has given a computationally convenient 
formulation to compute the variance matrix of time variable systems with random initial state 
and white noise excitations. Quantitative response description of systems with periodically 
varying parameters and separable nonstationary excitations are also given in references 5 and 
6. As a generalization to Van Trees' formulation Anderson et  al. [7] have proposed an algorithm, 
solution of a matrix Riccati equation, to design variable shaping filters for nonstationary 
random inputs. With reference to structural applications, Collins and Thomson [8] have studied 
random eigenvalue matrices and Hoshiya [9] has developed a perturbation method to treat 
systems with random eigenvalues and random parameters. Closed form solutions are also 
given by Barnoski and Maurer [10], and Sveshnikov [11] for the response variance of constant 
parameter systems with exponential type separable nonstationary excitations. 

Especially for systems with random eigenvalues or random parameters the so-called honest 
methods [2, 12] and hierarchy techniques [2, 13, 14] have been studied in some detail. As the 
state transition matrix of variable systems is rarely available in closed form the applicability 
of honest methods is very much limited. In hierarchy techniques heuristic assumptions are 
often made on the partial or complete independence of different random quantities so that 
certain higher moments can be expressed in terms of first and second order moments. 

Most of these above methods describe the system state and eigenvalues within the framework 
of the correlation or second moment theory, which in general, renders an incomplete stochastic 
characterization. This situation is not surprising for the fact that systems with random param- 
eters, except in certain special cases, require the construction of stochastic weighting functions 
[15] whose computational features are still in an initial stage. As an additional complexity, 
even in linear stochastic equations, the relation between the random parameters and random 
eigenvalues or response is nonlinear. Even for systems with random elements only in the inputs, 
the evaluation of higher order moments involves considerable computational effort. 

Systems where only the initial states are random are cryptodeterministic in the sense that the 
state follows deterministic laws and with the increase in time from the origin the stochastic 
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content in the response decreases. Therefore from the consideration of stochastic process 
theory such systems are one of the simplest models of stochastic differential equations. In 
principle the joint density of the initial state and the Jacobian of the coordinate transformations 
should characterize the final state. But the system being cryptodeterministic, the range and 
the extent to which the response is stochastic is also important. It is here the concept of degree 
of randomness introduced by Moyal [1, 16, 17] is helpful. 

This paper is concerned with such cryptodeterministic systems with time variable param- 
eters. Such systems are frequently encountered in engineering and merit further study. A 
flight structure approaching clear air region immediately after passing through low terrain 
turbulence is one such example. A perturbation scheme is described for the complete stochastic 
characterization of the response. Treated for illustrative purposes are the transient flapping 
(out of plane) oscillations of a lifting rotor blade which in forward flight represents a time vari- 
able system. 

2. Problem Description 

Consider a linear system with n degrees of freedom and with the random initial state X (to). 
Then the state equation can be set in the form 

2 ( 0  = F(OX(t) ,  to< t__< T (1) 

o r  

2i(t ) =fij(t)xj(t) ; i,j = 1, 2 . . . . .  2n 

For simplicity it is stipulated that the state vector is identical to the response vector and the 
mean value of the initial state is zero. With the solution of the state transition matrix equation 

(t, z) = F (t) 4) (t, ~), el) ('c, "c) = I z n  (2) 

the system state for a given initial state X(to) can be expressed as 

X (t) = �9 (t, to) X (t0) (3a) 

An important property which will be applied subsequently is the transition property of �9 (t, ~) : 

4~(tl, t2)4~(ta, t3)= ~(t l ,  t3) for all ta, t2 and t 3 (3b) 

With the initial state being described in terms of its correlation matrix 

E [X(to) xW(to)] = i~o, (4) 

the state variance and the state correlation matrices can be expressed as [4, 7] 

T P(t) = nx(t, t )= ~(t, to)Poq~ (t, to) (5) 

E IX (t 1) X (tz) T] = Rx (t 1, t2) 

= l q~(tl, t2)P(t2) for t 1 > t  2 (6) 

[ n(t l)  q~r(t2, t,) for t 1 < t2 

Without actually computing the state transition matrix one can also use the relation [4] 

P(t) = F( t )P( t )+P( t )Fr( t ) ,  P(to)= Po (7) 

to evaluate P (t) directly. 
Let the state matrix F(t) be close to constant matrix Fo such that 

F (t) = Fo + eF1 (t) (8a) 

where F 1 (t) is the small time variable part. In other words the elements of F o substantially 
dominate over the corresponding elements of F1 (t), that is 
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Ifo,0] >> If~,ii(t)[ ; i , j  = 1, 2 . . . .  ,2n (8b) 

Now the solution of equation (7) up to first order perturbation correction can be expressed in 
the form [1.8] 

P (t) = Po (t) + eP 1 (t) (8c) 

The substitution of equations (8a) and (8c) in (7), with the usual perturbation procedure, gives 
the zero-order equation 

Po(t) = FoPo(t)+ Po(t) FT , P(to) = Po (9a) 

and the first-order correction equation 

Pl (t) = F o P1 (t) + P1 (t) FT + (F1 (t) Po (t) + Po (t) FT (t)), P1 (to) = 0 (9b) 

Higher order perturbation corrections can be similarly expressed by maintaining e 2, e 3 etc. 
in the perturbation expansion. Using the perturbed state matrix, equation (8a), one can also 
compute the state transition matrix [18] or the response correlation matrix [5]. 

However the description in terms of the first two moments of the response process is in 
general incomplete. For a stronger stochastic characterization consider equation (3a) with a 
joint density function of the initial state 

fo(X(to))-=fo(Xl( to) ,  x2(t0) . . . .  , X2n(tO) ) (10) 

As the transformation from the initial state X(to) to the final state X(t)  is uniquely governed by 
the state transition matrix, the joint density of X(t)  can be expressed as [1] 

1 
f ( X  (t) = f ( x  1 (t), x2 (t) . . . . .  x2, (t)) = fo (X (t)) ]a (t)] (11) 

where 

J(t) = exp (trace F(O))dO (12a) 
tO 

Note that the use of (11) implies that the components of X(to) are expressed in terms of the 
components of the final state. For this purpose, using the transition property, equation (3b), 
one gets 

X (to) = ~ -  l(t, to) X (t ) = cI)(to, t) X (t) (12b) 

With deterministic inputs one has to include the contributions from the superposition integral 
whose integrand is the product of the state transition matrix and the input vector. For simplic- 
ity only zero-input scalar response is treated. 

Similarly in linear combination with the 2n components of the initial state, the response 
component, say x I (t), can be expressed at 2n different t values" 

2n 

xl(ti) = ~ cl)i)(ti)xj(to) ; i =  1, 2 . . . . .  2n, to< t <  T (13) 
j = l  

where 4) 11 (t), q~ 12 (t) . . . . .  4 ) 1,2, (t) are the 2n fundamental set of solutions which are normally 
the elements in the first row of the state transition matrix. When the 2n equations in (13) are 
independent (certain degenerate cases will be discussed subsequently) the joint density function 
for random variables xl (tl), x,  (t2), ..., xl (t2,) can be expressed as 

1 
f ( x , ( t l ) ,  Xl(t2) . . . . .  Xl (t2n))=fo(X(to)) '[J(t l ,  t2 . . . . .  t2,) [ (14) 

where 

q~al(tl) ~bl2(tl) ... ~bl,e~(tl) 
a ( t l ,  t2, "" ,  t2n) = : (15) 

q~l'l (t2n) q~12(t2n)... (91,2n(t2n) 
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Viewed geometrically in a 2n dimensional space, the Jacobian in (15) serves dual purposes. 
First, one can ascertain whether certain pairs of random variables generated according to (13) 
are perfectly correlated. Even within the transient region for some specific combination of 
points on the time axis the joint density of the response random variables could contain 
singularity line masses. Second, one can estimate the range after which the response process 
is essentially deterministic. Because, for stable systems with bounded inputs inducing bounded 
responses, the influence of the initial state decreases with the growth of the response. 

Concerning the stochastic structure of the response, observe that higher the order of the 
probability density function stronger is the stochastic characterization. Therefore higher the 
dimension of the state, less deterministic the transients are. At this stage one uses the concept 
of degree of randomness introduced by Moyal [2, 16, 17] in statistical mechanics. A random 
process {x, (t)} has 2n degrees of randomness if 2n is the smallest integer when the Jacobian 
in (15) does not vanish identically for all values of t~, t 2 . . . .  , t2,. That is , f  (tl, t2 . . . .  , tk) is singular 
for k > 2n, leading to line masses andf ( t l ,  t 2 . . . . .  t2n ) is not necessarily singular for k < 2n points. 
If J(tl ,  t2 . . . . .  t2n ) does not vanish for any finite values of k the process {xl(t)} is said to be 
completely random. Thus, if Xl(t ) is known at 2n distinct points, say at t~ < t2 < ... < t2,, then 
xl(tk) values for k >2n can be determined in terms of these Xl(tl), Xz(t2) . . . .  Xz(t2, ) values. 
If Xl(t) is known only at k <  2n points, then the remaining 2 n - k  values are subject to chance 
mechanism, hence the response description is incomplete. These three cases, k > 2n, k = 2n and 
k < 2n can be quantitatively stated using multivariate dirac delta functions [19]. Henceforth 
it will be stipulated that k = 2n. Thus according to Moyal's degree of randomness criteria the 
transient response of a cryptodeterministic system with n degrees of freedom will have 2n 
degrees of randomness and is completely described by (11), (12a), (14) and (15). 

To exemplify consider a single degree of freedom system with the state matrix 

0 1 
Fo = , 0<  t <  T (16a) 

-~o~ -2~COo 
which has the state transition matrix with elements 

cql = (exp(-~c%t))  cos c~t + - -  sin c~t (16b) 
O) 

e12 = (l/N)sin N t ( e x p ( -  ~e)o t)) (16c) 

e 2 ~ = ~ 1  and e 2 2 = ~ 2  

where c~ = co o x/1 - ~2. 
With the response defined by the relation 

X 1 (t) = X 1 (0) a l l  (t) ~- 21 (0) (~12 (t) (16d) 

the Jacobian, equation (15), simplifies to 

J(tl ,  t2) = (1/~) exp ( -  ~COo(t I + ta)) sin ~( t  2 - tl) (lYa) 

and the components of the initial state X(to) in equation (14) can be expressed as 

xl(O) = x l ( t l )~  (17b) 
J(tl, t~) 

and 

x2(O) = 2 , ( 0 ) =  xl ( t2)~11( tx)-x l ( t l )a11( t2)  
J(t t ,  t2) (17c) 

Observe that J(t t, t2) vanishes for cS(t 2 - t t ) =  n, but it is not identically zero for all t~ and t2 
values. Thus according to Moyal's degree of randomness criteria the response process {x~(t)} 
has two degrees of randomness. To further illustrate the vanishing of the Jacobian for certain 
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specific t values assume that the initial state X(to)jointly belongs to a normal process with 
properties : 

and 

E [ X l ( t O )  ] : E[Xl(t0)  ] : 0 

E IX 1 (to)X l(t0) ] = 0-2, E [21 (to) X1 (to)] ~--- 0-2 

(18a) 

(lab) 

E[x1(to)21(to) ] = r0-10" 2 (18c) 

The joint probability density function of the initial state can now be set in the form 

1 [_ 1 ~X(to) 2 2rx ( to )2 ( to )x ( to )2~]  
+ (19,) f(X(to) ) = 2n0-10-1(l_r2) ~ exp 2(1--r2)[  a2 0-10-2 a ~ - 2  } J  

Therefore from equation (14) 

1 
f (x l ( t l )  , Xl(t2) ) =f(X(to)  ) [J(tl, t2)] (20) 

where J(t,, t2) and the components of X(to) are given by (17a), (17b) and (17c). 
At t2 = tl + n/~, for any arbitrary constant C, one gets Xl(t2)= Cx(t,), and r =  1. This case 

of perfect correlation with r = 1 and the existence of f(x(tl) ,  x,(t2)) at t2 = ~ / ~ +  t l are not 
strictly compatible. Still it is possible to describe {X(tl)x(tl + n/~)} in terms of a degenerate 
normal process such that the corresponding joint density function is concentrated on the 
straight lines [20] 

Xl(tl) __ Xl(t2) 
, t2 = ~ /~+t l  (21) 

0"3 0-4 

where Xl(tl) and x~(te) have the properties 

E[xl(tl)Xl(tl) ]=0-2, E[xl(t2)xl(t2) ]=0-2 

and 

e [x 1 (U) x~ (t2)] = P0-3 0-4 

As expected, with p ~  1, the conditional probability density function 

1 ~_ {xl (t2) - -  (0-4/0-3) pXl (t 1)} 2] 
f(xl(t2)lXl(tl)) = 0-4(2n(1 _p2))�89 exp L 20"2(1 _p2)  .j (22) 

approaches the dirac delta function 6(xl(t2)-(a4/0-3)pxl (t l) ), which is consistent with (21). 
Therefore at t2 = tl +c~/n one gets 

f ( x l ( t , ) ,  xz(t2), t 2 - t  l = n / ~ ) = f ( x , ( t l ) ) 6 ( x l ( t 2 ) -  0-4xl(tl) ) (23) 
0' 3 

where the singularity line masses indicate the deterministic functional dependence between 
x,(tl) and xl(tl-I-~/lr ). 

3. Application to a Helicopter Blade Motion 

Consider the flapping or the out of plane motion of a lifting rotor blade with a single degree 
of freedom. It is assumed that the blade is rigid against twisting and bending and the flapping 
hinge is centrally located. At small advance ratios, say up to 0.6, the linearized homogeneous 
part of the equation in a rotating frame of reference has the state matrix [5] 
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, 0 < t < T (24) 

_ 

where the parameters 1' and ~ are respectively the Lock ~nertia number and the advance ratio. 
It will be assumed that the joint density of the initial state is given. To be somewhat in the 
range of current helicopter flight regimes consider two typical cases, i) # = 0, 7 = 4; and ii) t~ = 0.3 
and 7 = 4. The first case refers to hovering and the second one for forward flight. 

In the perturbation scheme one considers the perturbed state matrix 

F(t) = Fo + aF1 (t) (25) 

where F o is given by (16a) with coo = 1 and 2coo~=0.5, and 

[ 0  0 1 Fi(t) = , d _  7# (26) 
- d  cos t - d  sin t 6 

Assume the state transition matrix in the form 4~(t, 0) + ecb(t, 0) where the perturbation param- 
eter a is only a mathematical artifice, the solution of interest being at e = 1. Observe that the 
solution of the zero-order equation 

~o(t, 0 )=  F o Co(t, 0), ~b(0, 0) = 12 (27) 

is given by (16b) and (16c). After some algebra the solution of the first-order perturbation 
equation 

d)l(t, 0)= F0 ~l(t, O)+(F,(t)~bo(t, 0)), qS, (0, 0 )=  0 (28) 

can be set in the form 

fill (t) = (d/2~)(exp (x~coo t)) [(co2/~) A (t) - U(t) - (~coo/C~) C(t)] (29a) 

fll 2 (t) = (d/2c~)(exp ( -  ~coo t)) [D(t) + (~coo/C~)(t) - (1/65) C(t)] (29b) 

fl2l(t)=/~,,(t) and f122(t)= D,2(t) (29c) 

where 

A(t) = (o~/(265+ 1))cos(1 + ~ ) t +  ( ~ / ( 2 ~ -  1))cos(c~- 1) t - (4~2/ (4~  2 -  1))cos c~t (30a) 

S(t) = (c5/(2~- 1))cos(co- 1 ) t -  (c~/2~ + 1)cos(1 + c~)t-  (2~/(4~ 2 - 1))cos c~t (30b) 

C(t) = (-N/(2c~+ 1))sin(1 +c~) t - (co / (2N-  1))sin(1 -cS)t  + (2N/(4c~ 2 -  1))sin c~t (30c) 

D(t) = ( -  ~ / ( 2 ~ -  1) sin (1 - ~) t  + (~/(1 + 2~)) sin (1 + ~)t  + ( 2 -  4~2)/(4c~ 2 - 1) sin ~ t  
(30d) 

Now the state transition matrix is given by 

05(t, 0)= q~o(t, 0)+ ~l(t, 0) = [ al l  
L~21+fi21 

(3a) 
+/322_] 

where equations (16b), (16c), (29a), (29b) and (29c) define the four elements of 4~(t, 0). For the 
joint probability density function of the final state, the initial state components x(0) and &(0) 
have to be expressed in terms of the final state components. According to (12b) 

x(O) = X(t)q~22(t) -- x(t) ~12(t) (32a) 
J(t) 

fc(O) = x(t)C zl(t) (32b) 
S(0 
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where, from (12a), the Jacobian J(t) simplifies to 

J(t) = exp (ct + d sin t) (32c) 

Similarly for the joint probability density function of the response random variables x(tl) and 
x(t2), one gets 

x(O) = x ( t l )  q~12(t2) - -  XCt2) q~t2( tz)  (33a)  
J(t,, t2) 

2(0) = x (t2) ~bl, (t,) - xCt,) (0,, (t2) (33b) 
J(t,, t2) 

and from (15) 

q ~ l l ( t l )  q~12(t l )  
J(tl, t2) = (33c) 

~bl,(t2) •12(t2) 

Thus equation (32) and (33) respectively define the joint density of the final state components 
x(t) and :~(t) and of response random variables x(tl) and x(t2). 

Now coming to numerical results~ figure 1 refers to J(ti, t2) values with t i = 1 and 6. The full 
lines refer to the constant parameter or the hovering case and dotted curves for the time 
variable system or the forward flight case. The perturbation solutions for d = 0.2 (7 = 4, # = 0.3) 
have been verified with a direct numerical approach and the solutions from these two methods 
agree almost up to two significant figures. Observe that J(tl, t2) in some sense indicates the 
range and the variation in the stochastic structure of the transient response. Numerical study 
has indicated that for t ~- 5~ the transient effect is negligible and the response with deterministic 
excitations will be essentially deterministic. 

0 . 6  

0 . 4  

0 . 2  

t O. 

~- - 0 . 2  

- 0 . 4  

- 0 . 6  
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t i - - ' 6  
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_ /  

I 
--t t z ~  
_L 
1 
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Figure 1. Jacobian of the response random variables. 

4. Concluding Remarks 

With the perturbation scheme as presented here it is possible to treat certain time variable 
cryptodeterministic systems of engineering interest. The method in general provides a com- 
putationally convenient formulation for the joint probability density function of the final state 
and of response random variables, including certain degenerate cases with singularity line 
masses in the joint density functions. In conformity with the degree of randomness criteria 
the method provides a complete stochastic characterization of the response process. 
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